Group - A (Multiple Choice Type Questions)

- Choose the correct alternatives for any ten of the following:
- i) The differential coefficient of x⁶ with respect to x³ is

ii) If $y = \log x^2$, the value of $\frac{d^2y}{dx^2}$

a)
$$\frac{2}{3}$$

$$\sqrt{b}$$
 $\frac{2}{x^2}$

c)
$$\frac{2}{x}$$

(iii) If y = 2 at and $x = at^2$, then $\frac{dy}{dx}$ at t = 1 is

$$c) - 1$$

iv) The value of $\int \csc^2 2x \ dx$ is

$$\sqrt{a}$$
 = $\frac{1}{2}$ cot2r b) cot2x

c)
$$\frac{\csc 2x}{2}$$

BCA M-144

v) If
$$P = \{2, 4, 6, 7, 8, 9\}$$
, $Q = \{1, 2, 6, 9\}$, then $P - Q$ is
$$\sqrt{a} \{4, 7, 8\}$$
b) $\{4, 6, 8, 9\}$

- (4, 7, 8)
- c) {1}
- d) {2, 4, 6, 7, 8, 9}

vi) The value of t for which the matrix $\begin{bmatrix} 2 & 0 & 1 \\ 5 & t & 3 \\ 0 & 3 & 1 \end{bmatrix}$ is singular is

- a) $-\frac{3}{2}$
- b) 2

 \checkmark c) $\frac{3}{2}$

d) - 2

vii) The value of $\lim_{x\to 0} \frac{\sin x}{x}$, (where x is radian) is

√a) 1

d) - 1

viii) The value of $\lim_{x\to 2} \frac{x^2-4}{x-2}$ is

a) 1

√b) 4

d) 2

ix) If $A = \{1, 2, 3\}$, $B = \{a, b\}$, $A \times B$ is given by

- √a) {(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)}
- b) {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)}
- c) {(1, a), (1, b), (2, a), (2, b), (3, a), (3, b), ()}
- d) {1, 2, 3, a, b}

x) Solution of the equation $x^3 + 2x + 3 = 0$ will give us

- ✓a) no real positive roots but one real negative root
- b) 2 real positive roots and 1 real negative root
- c) 1 real positive root and 2 imaginary roots
- d) 2 real negative roots and only one imaginary root

xi) Matrix A and Matrix B of order m x n are said to be equal, if

- a) m = n
- b) $A^T = B^T$
- √c) (A B) equals the null matrix
- d) AB = BA

xii) Rank of matrix $A = \begin{bmatrix} 3 & 4 \\ 4 & 5 \end{bmatrix}$ is given by

- √a) 2
- b) 1

d) 0

Group - B (Short Answer Type Questions)

2. Evaluate
$$\left(\int \frac{1}{x^2} e^{\frac{1}{x}} dx\right)$$

See Topic: INDEFINITE INTEGRATIONS, Short Answer Type Question No. 7.

3. If
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 5 & 7 \end{bmatrix}$$
 and $B = \begin{bmatrix} -3 & 1 & 2 \\ 5 & -3 & -1 \end{bmatrix}$, then find A + B and AB.

See Topic: LIMIT, CONTINUITY & DIFFERENTIABILITY, Short Answer Type Question No. 7.

4. A function f(x) is defined as follows

$$f(x) = -x$$
 when $x \le 0$

$$= x$$
 when $0 < x < 1$

$$= 2 - x$$
 when $x \ge 1$

Show that the f(x) is continuous at x = 0 and x = 1.

See Topic: LIMIT, CONTINUITY & DIFFERENTIABILITY, Long Answer Type Question No. 6.

5. If
$$u = \frac{y}{z} + \frac{z}{x} + \frac{x}{y}$$
, then prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 0$.

See Topic: FUNCTION OF SEVERAL VARIABLES, Long Answer Type Question No. 4.

6. If a, b are the roots of the equation $x^2 - px + q = 0$, then find the equation whose roots are 1/a and 1/b.

See Topic: POLYNOMIAL, Short Answer Type Question No. 11.

7. Solve the following system of equations using Cramer's rule:

$$x + 2y + 3z = 6$$

$$2x + 4y + z = 7$$

$$3x + 2y + 9z = 14$$

See Topic: MATRICES, Long Answer Type Question No. 7.

Group - C

(Long Answer Type Questions)

g, a) Solve the following equation by matrix inversion method:

$$x + y + z = 8$$

 $x - y + 2z = 6$
 $3x + 5y + 7z = 14$

- b) Give the definition of commutative group and show that $\{1, \omega, \omega^2\}$ where $\omega^3 = +1$ forms a commutative group in respect of multiplication.
- a) See Topic: MATRICES, Long Answer Type Question No. 8.
- b) See Topic: BINARY COMPOSITION, Short Answer Type Question No. 3.
- g. a) In a class of 50 students, 15 read Physics, 20 read Chemistry and 20 read Mathematics. 3 read Physics and Chemistry, 6 read Chemistry and Mathematics and 5 read Physics and Mathematics. 7 read none of the subjects. How many students read all the subjects?
- b) Integrate $\int xe^{x}/(x+1)^{2} dx$.
- a) See Topic: SET THEORY, Long Answer Type Question No. 3.
- b) See Topic: INDEFINITE INTEGRATIONS, Short Answer Type Question No. 8.
- 10. a) Find dy/dx when $x = y \log(xy)$
- b) Find for what values of x, the following expression is maximum and minimum respectively: $2x^3 21x^2 + 36x 20$.
- c) A function f(x) is defined in the following way:

$$f(x) = -x \text{ when } x \le 0$$

$$= x \text{ when } 0 < x < 1$$

$$= 2 - x \text{ when } x \ge 1$$

Show that it is continuous at x = 0.

- a) See Topic: SUCCESSIVE DIFFERENTIATION, Short Answer Type Question No. 7.
- b) See Topic: MISCELLANEOUS, Long Answer Type Question No. 2.
- c) See Topic: LIMIT, CONTINUITY & DIFFERENTIABILITY, Long Answer Type Question No. 7.

11. a) Evaluate
$$\int_{0}^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx'$$

b) Evaluate
$$\int_{0}^{\pi/2} \log(\tan x) dx$$

c) If $A = \{a, b, c, d, e\}$, $B = \{c, a, e, g\}$ and $C = \{b, e, f, g\}$, then show that $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$

POPULAR PUBLICATIONS

- a) See Topic: DEFINITE INTEGRALS, Short Answer Type Question No. 3.
- b) See Topic: DEFINITE INTEGRALS, Short Answer Type Question No. 5.
- c) See Topic: SET THEORY, Long Answer Type Question No. 4.
- 12. a) Discuss the nature of the conic represented by $3x^2 8xy 3y^2 + 10x 13y + 8 = 0$ by reducing to its canonical form.
- b) Find X from the matrix equation AX = B, where $A = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 1 & 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 2 \\ 1 \\ 7 \end{bmatrix}$
- c) If $f(x, y) = \log (x^2y + xy^2)$ find f_{xx} , f_{xy} , f_{yy} and f_{yx} .
- a) See Topic: GENERAL EQUATION OF SECOND DEGREE, Long Answer Type Question No. 2.
- b) See Topic: MATRICES, Long Answer Type Question No. 9.
- c) See Topic: FUNCTION OF SEVERAL VARIABLES, Long Answer Type Question No. 5.
- 13. a) Apply Descarte's rule of sign to show that the equation $x^4 + 2x^2 7x 5 = 0$ has two real roots and two non - real roots.
- b) Find the maximum and minimum values of f(x) where $f(x) = x + \frac{1}{x}$
- c) Write Taylor's formula for the function $f(x) = e^x$ about the point x = 0 with Lagrange's form of remainder after 3 terms.
- a) See Topic: POLYNOMIAL, Long Answer Type Question No. 7.
- b) See Topic: MISCELLANEOUS, Short Answer Type Question No. 2.
- c) See Topic: EXPANSION OF FUNCTION, Long Answer Type Question No. 2.